首页> 外文OA文献 >The Discrete Dantzig Selector: Estimating Sparse Linear Models via Mixed Integer Linear Optimization
【2h】

The Discrete Dantzig Selector: Estimating Sparse Linear Models via Mixed Integer Linear Optimization

机译:离散Dantzig选择器:通过混合估计稀疏线性模型   整数线性优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a novel high-dimensional linear regression estimator: the DiscreteDantzig Selector, which minimizes the number of nonzero regression coefficientssubject to a budget on the maximal absolute correlation between the featuresand residuals. Motivated by the significant advances in integer optimizationover the past 10-15 years, we present a Mixed Integer Linear Optimization(MILO) approach to obtain certifiably optimal global solutions to thisnonconvex optimization problem. The current state of algorithmics in integeroptimization makes our proposal substantially more computationally attractivethan the least squares subset selection framework based on integer quadraticoptimization, recently proposed in [8] and the continuous nonconvex quadraticoptimization framework of [33]. We propose new discrete first-order methods,which when paired with state-of-the-art MILO solvers, lead to good solutionsfor the Discrete Dantzig Selector problem for a given computational budget. Weillustrate that our integrated approach provides globally optimal solutions insignificantly shorter computation times, when compared to off-the-shelf MILOsolvers. We demonstrate both theoretically and empirically that in a wide rangeof regimes the statistical properties of the Discrete Dantzig Selector aresuperior to those of popular $\ell_{1}$-based approaches. We illustrate thatour approach can handle problem instances with p = 10,000 features withcertifiable optimality making it a highly scalable combinatorial variableselection approach in sparse linear modeling.
机译:我们提出了一种新颖的高维线性回归估计器:DiscreteDantzig选择器,该函数将非零回归系数的数量最小化,但要根据特征和残差之间的最大绝对相关性进行预算。基于过去10-15年中整数优化的重大进步,我们提出了一种混合整数线性优化(MILO)方法,以针对该非凸优化问题获得可证明的最优全局解。整数优化中算法的当前状态使我们的提议在计算上比[8]中最近提出的基于整数二次优化的最小二乘子集选择框架和[33]的连续非凸二次优化框架更具吸引力。我们提出了新的离散一阶方法,将其与最新的MILO求解器配合使用,可以在给定的计算预算下为离散Dantzig选择器问题提供良好的解决方案。我们举例说明,与现成的MILOsolver相比,我们的集成方法可提供全局最佳解决方案,计算时间明显缩短。我们在理论和经验上都证明,在广泛的范围内,离散Dantzig选择器的统计特性要优于基于$ \ ell_ {1} $的流行方法。我们说明了我们的方法可以处理具有p = 10,000个特征的问题实例,并且具有可证明的最优性,这使其成为稀疏线性建模中高度可扩展的组合变量选择方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号